close
close

The PM20D1-NADA pathway protects against Parkinson’s disease

  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006;5:75–86.

    Article 
    PubMed 

    Google Scholar 

  • Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Monte DA. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol. 2003;2:531–8.

    Article 
    PubMed 

    Google Scholar 

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article 
    PubMed 

    Google Scholar 

  • Wong YC, Krainc D. alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357:1255–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22:657–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spehlmann R, Stahl SM. Dopamine acetylcholine imbalance in Parkinson’s disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet. 1976;1:724–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, et al. Trial of Cinpanemab in Early Parkinson’s Disease. N Engl J Med. 2022;387:408–20.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al. Trial of Prasinezumab in Early-Stage Parkinson’s Disease. N Engl J Med. 2022;387:421–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smit JW, Basile P, Prato MK, Detalle L, Mathy FX, Schmidt A, et al. Phase 1/1b Studies of UCB0599, an Oral Inhibitor of alpha-Synuclein Misfolding, Including a Randomized Study in Parkinson’s Disease. Mov Disord. 2022;37:2045–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levin J, Sing N, Melbourne S, Morgan A, Mariner C, Spillantini MG, et al. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: A randomised, double-blind, placebo-controlled phase 1a trial. EBioMedicine. 2022;80:104021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Wang T, Meng L, Jin L, Liu C, Liang Y, et al. Novel naturally occurring autoantibodies attenuate alpha-synuclein pathology in a mouse model of Parkinson’s disease. Neuropathol Appl Neurobiol. 2023;49:e12860.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soileau MJ, Aldred J, Budur K, Fisseha N, Fung VS, Jeong A, et al. Safety and efficacy of continuous subcutaneous foslevodopa-foscarbidopa in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022;21:1099–109.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soares-da-Silva P, Fernandes MH, Pinto-do-O PC. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules. Br J Pharm. 1994;112:611–5.

    Article 
    CAS 

    Google Scholar 

  • Burke WJ, Chung HD, Li SW. Quantitation of 3,4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde, the monoamine oxidase metabolites of dopamine and noradrenaline, in human tissues by microcolumn high-performance liquid chromatography. Anal Biochem. 1999;273:111–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsunoda M, Takezawa K, Yanagisawa T, Kato M, Imai K. Determination of catecholamines and their 3-O-methyl metabolites in mouse plasma. Biomed Chromatogr. 2001;15:41–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, et al. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology. 2006;31:2221–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Itäaho K, Alakurtti S, Yli-Kauhaluoma J, Taskinen J, Coughtrie MW, Kostiainen R. Regioselective sulfonation of dopamine by SΜLT1A3 in vitro provides a molecular explanation for the preponderance of dopamine-3-O-sμlfate in human blood circulation. Biochem Pharm. 2007;74:504–10.

    Article 
    PubMed 

    Google Scholar 

  • Uutela P, Karhu L, Piepponen P, Käenmäki M, Ketola RA, Kostiainen R. Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal Chem. 2009;81:427–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Q, Chen L, Hu LJ, Liu WY, Feng F, Qu W. Two new ortho benzoquinones from Uncaria rhynchophylla. Chin J Nat Med. 2016;14:232–5.

    CAS 
    PubMed 

    Google Scholar 

  • Lindholm P, Voutilainen MH, Laurén J, Peränen J, Leppänen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448:73–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. 2010;20:345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmadi FA, Grammatopoulos TN, Poczobutt AM, Jones SM, Snell LD, Das M, et al. Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis. Neurochem Res. 2008;33:886–901.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masato A, Bubacco L, Greggio E. Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson’s disease: An Editorial Highlight for “Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo”. J Neurochem. 2021;158:833–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of alpha-Synuclein. Angew Chem Int Ed Engl. 2016;55:7374–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384:1196–205.

    Article 

    Google Scholar 

  • Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S, et al. Long-term Effectiveness of Adjuvant Treatment With Catechol-O-Methyltransferase or Monoamine Oxidase B Inhibitors Compared With Dopamine Agonists Among Patients With Parkinson Disease Uncontrolled by Levodopa Therapy: The PD MED Randomized Clinical Trial. JAMA Neurol. 2022;79:131–40.

    Article 
    PubMed 

    Google Scholar 

  • Sukhanova IA, Sebentsova EA, Khukhareva DD, Vysokikh MY, Bezuglov VV, Bobrov MY, et al. Early-life N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats. Int J Dev Neurosci. 2019;78:7–18.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kudo E, Fujii Y. Dopamine: functions, regulation, and health effects. New York: Nova Science Publishers; 2012.306.

  • Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharm Ther. 2007;114:13–33.

    Article 
    CAS 

    Google Scholar 

  • Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2018;11:487.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Redmond WJ, Cawston EE, Grimsey NL, Stuart J, Edington AR, Glass M, et al. Identification of N-arachidonoyl dopamine as a highly biased ligand at cannabinoid CB1 receptors. Br J Pharm. 2016;173:115–27.

    Article 
    CAS 

    Google Scholar 

  • Hsu CC, Bien MY, Huang YT, Ruan T, Kou YR, Lin YS. N-arachidonyl dopamine sensitizes rat capsaicin-sensitive lung vagal afferents via activation of TRPV1 receptors. Respir Physiol Neurobiol. 2009;167:323–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bisogno T, Melck D, Gretskaya NM, Bezuglov VV, De Petrocellis L, Di Marzo V. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351:817–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novosadova E, Antonov S, Arsenyeva E, Kobylanskiy A, Vanyushina Y, Malova T, et al. Neuroprotective and neurotoxic effects of endocannabinoid-like compounds, N-arachidonoyl dopamine and N-docosahexaenoyl dopamine in differentiated cultures of induced pluripotent stem cells derived from patients with Parkinson’s disease. Neurotoxicology. 2021;82:108–18.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novosadova EV, Arsenyeva EL, Manuilova ES, Khaspekov LG, Bobrov MY, Bezuglov VV. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells. Biochemistry. 2017;82:1367–72.

    CAS 
    PubMed 

    Google Scholar 

  • Bobrov MY, Lizhin AA, Andrianova EL, Gretskaya NM, Frumkina LE, Khaspekov LG, et al. Antioxidant and neuroprotective properties of N-arachidonoyldopamine. Neurosci Lett. 2008;431:6–11.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wojtalla A, Herweck F, Granzow M, Klein S, Trebicka J, Huss S, et al. The endocannabinoid N-arachidonoyl dopamine (NADA) selectively induces oxidative stress-mediated cell death in hepatic stellate cells but not in hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2012;302:G873–87.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu SS, Bradshaw HB, Benton VM, Chen JS, Huang SM, Minassi A, et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot Ess Fat Acids. 2009;81:291–301.

    Article 
    CAS 

    Google Scholar 

  • Kim JT, Terrell SM, Li VL, Wei W, Fischer CR, Long JZ. Cooperative enzymatic control of N-acyl amino acids by PM20D1 and FAAH. Elife. 2020;9:e55211.

  • Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell. 2016;166:424–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, et al. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharm. 2019;863:172708.

    Article 
    CAS 

    Google Scholar 

  • Benson KK, Hu W, Weller AH, Bennett AH, Chen ER, Khetarpal SA, et al. PM20D1 Natural human genetic variation determines basal and inducible expression of PM20D1, an obesity-associated gene. Proc Natl Acad Sci USA. 2019;116:23232–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci USA. 2018;115:E6937–E6945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song N, Fang Y, Zhu H, Liu J, Jiang S, Sun S, et al. Kir6.2 is essential to maintain neurite features by modulating PM20D1-reduced mitochondrial ATP generation. Redox Biol. 2021;47:102168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang W, Meng X, Yang C, Fang D, Wang X, An J, et al. Brown adipose tissue activation in a rat model of Parkinson’s disease. Am J Physiol Endocrinol Metab. 2017;313:E731–E736.

    Article 
    PubMed 

    Google Scholar 

  • Larrick JW, Larrick JW, Mendelsohn AR. Uncoupling Mitochondrial Respiration for Diabesity. Rejuvenation Res. 2016;19:337–40.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, et al. Alzheimer’s Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson’s Disease: Report from Enlarged Slovak Study. Int J Mol Sci. 2022;23:1604.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Mut JV, Glauser L, Monk D, Gräff J. Comprehensive analysis of PM20D1 QTL in Alzheimer’s disease. Clin Epigenetics. 2020;12:20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudakou U, Yu E, Krohn L, Ruskey JA, Asayesh F, Dauvilliers Y, et al. Targeted sequencing of Parkinson’s disease loci genes highlights SYT11, FGF20 and other associations. Brain. 2021;144:462–72.

    Article 
    PubMed 

    Google Scholar 

  • Paul KC, Kusters C, Furlong M, Zhang K, Yu Y, Folle AD, et al. Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson’s disease patients. Brain Behav Immun Health. 2022;26:100530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Mut JV, Heyn H, Silva BA, Dixsaut L, Garcia-Esparcia P, Vidal E, et al. PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med. 2018;24:598–603.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, et al. alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287:15345–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • John R. Crowther, Methods in Molecular Biology, the ELISA Guidebook, 2nd ed. Humana Press, a part of Springer Science + Business Media, LLC 2009.

  • Butler JE. The Behavior of Antigens and Antibodies Immobilized on a Solid Phase. In: Van Regenmortel MHV, editor. Structure of Antigens. Boca Raton, FL: CRC Press, 1992. 209-59. Vol. 1.

  • Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51:2415–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–.e19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balvers MG, Verhoeckx KC, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:1583–90.

    Article 
    CAS 

    Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA. 2002;99:8400–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zajac D, Matysiak Z, Czarnocki Z, Pokorski M, et al. Membrane association of N-oleoyl-dopamine in rat brain. J Physiol Pharm. 2006;57:403–8.

    Google Scholar 

  • Butler YR, Liu Y, Kumbhar R, Zhao P, Gadhave K, Wang N, et al. alpha-Synuclein fibril-specific nanobody reduces prion-like alpha-synuclein spreading in mice. Nat Commun. 2022;13:4060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, et al. LRRK2 modifies alpha-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bera K, Kiepas A, Godet I, Li Y, Mehta P, Ifemembi B, et al. Extracellular fluid viscosity enhances cell migration and cancer disSDination. Nature. 2022;611:365–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, et al. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep. 2021;37:110133.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19:101–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regμlated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics. 2020;10:10154–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi M, Uchikado H, Caprotti D, Weidenheim KM, Dickson DW, Ksiezak-Reding H, et al. Identification of G-protein coupled receptor kinase 2 in paired helical filaments and neurofibrillary tangles. J Neuropathol Exp Neurol. 2006;65:1157–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin WH, Chung KC. Death-associated Protein Kinase 1 Phosphorylates alpha-Synuclein at Ser129 and Exacerbates Rotenone-induced Toxic Aggregation of alpha-Synuclein in Dopaminergic SH-SY5Y Cells. Exp Neurobiol. 2020;29:207–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan YH, Yan WF, Sun JD, Huang JY, Mu Z, Chen NH. The molecular mechanism of rotenone-induced alpha-synuclein aggregation: emphasizing the role of the calcium/GSK3beta pathway. Toxicol Lett. 2015;233:163–71.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White JP, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev. 2016;96:911–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • You H, Mariani LL, Mangone G, Le Febvre de Nailly D, Charbonnier-Beaupel F, Corvol JC. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res. 2018;373:111–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedman JH. Early- vs late-start levodopa relieved symptoms but did not affect disease progression in Parkinson disease. Ann Intern Med. 2019;170:JC56.

    Article 
    PubMed 

    Google Scholar 

  • Verschuur CVM, Suwijn SR, Boel JA, Post B, Bloem BR, van Hilten JJ, et al. Randomized Delayed-Start Trial of Levodopa in Parkinson’s Disease. N Engl J Med. 2019;380:315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamamoto BK, Novotney S. Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem. 1998;71:274–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss M, O’Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, et al. [3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther. 2020;374:241–51.

  • Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, et al. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry. 2023;28:2934–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pihlstrøm L, Rengmark A, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L, et al. Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease. J Hum Genet. 2015;60:357–62.

    Article 
    PubMed 

    Google Scholar 

  • Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, et al. Pathological structural conversion of alpha-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci. 2022;25:1134–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park Jae-Hyeon, Burgess JeremyD, Faroqi AymanH, DeMeo NatashaN, Fiesel FabienneC, Springer Wolfdieter, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener. 2020;15:5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar